Extending several works, we prove a general Adams-Moser-Trudinger type inequality for the embedding of Bessel-potential spaces $ ilde H^{rac{n}{p},p}(Omega)$ into Orlicz spaces for an arbitrary domain $Omega$ with finite measure. In particular we prove $$ sup_{uin ilde H^{rac{n}{p},p}(Omega), ;|(-Delta)^{rac{n}{2p}}u|_{L^{p}(Omega)}leq 1}int_{Omega}e^{alpha_{n,p} |u|^rac{p}{p-1}}dx leq c_{n,p}|Omega|, $$ for a positive constant $alpha_{n,p}$ whose sharpness we also prove. We further extend this result to the case of Lorentz-spaces (i.e. $(-Delta)^rac{n}{2p}uin L^{(p,q)})$. The proofs are simple, as they use Green functions for fractional Laplace operators and suitable cut-off procedures to reduce the fractional results to the sharp estimate on the Riesz potential proven by Adams and its generalization proven by Xiao and Zhai. We also discuss an application to the problem of prescribing the $Q$-curvature and some open problems.

Fractional Adams Moser Trudinger type inequalities / Martinazzi, L. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 127:(2015), pp. 263-278. [10.1016/j.na.2015.06.034]

Fractional Adams Moser Trudinger type inequalities

Martinazzi L
2015

Abstract

Extending several works, we prove a general Adams-Moser-Trudinger type inequality for the embedding of Bessel-potential spaces $ ilde H^{rac{n}{p},p}(Omega)$ into Orlicz spaces for an arbitrary domain $Omega$ with finite measure. In particular we prove $$ sup_{uin ilde H^{rac{n}{p},p}(Omega), ;|(-Delta)^{rac{n}{2p}}u|_{L^{p}(Omega)}leq 1}int_{Omega}e^{alpha_{n,p} |u|^rac{p}{p-1}}dx leq c_{n,p}|Omega|, $$ for a positive constant $alpha_{n,p}$ whose sharpness we also prove. We further extend this result to the case of Lorentz-spaces (i.e. $(-Delta)^rac{n}{2p}uin L^{(p,q)})$. The proofs are simple, as they use Green functions for fractional Laplace operators and suitable cut-off procedures to reduce the fractional results to the sharp estimate on the Riesz potential proven by Adams and its generalization proven by Xiao and Zhai. We also discuss an application to the problem of prescribing the $Q$-curvature and some open problems.
2015
Fractional Sobolev spaces; Moser-Trudinger inequalities; nonlocal equations; analysis; applied mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
Fractional Adams Moser Trudinger type inequalities / Martinazzi, L. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 127:(2015), pp. 263-278. [10.1016/j.na.2015.06.034]
File allegati a questo prodotto
File Dimensione Formato  
Martinazzi_Fractional_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 715.62 kB
Formato Adobe PDF
715.62 kB Adobe PDF   Contatta l'autore
Martinazzi_preprint_Fractional_2015.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 378.31 kB
Formato Adobe PDF
378.31 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1646180
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 62
social impact