Extending several works, we prove a general Adams-Moser-Trudinger type inequality for the embedding of Bessel-potential spaces $ ilde H^{rac{n}{p},p}(Omega)$ into Orlicz spaces for an arbitrary domain $Omega$ with finite measure. In particular we prove $$ sup_{uin ilde H^{rac{n}{p},p}(Omega), ;|(-Delta)^{rac{n}{2p}}u|_{L^{p}(Omega)}leq 1}int_{Omega}e^{alpha_{n,p} |u|^rac{p}{p-1}}dx leq c_{n,p}|Omega|, $$ for a positive constant $alpha_{n,p}$ whose sharpness we also prove. We further extend this result to the case of Lorentz-spaces (i.e. $(-Delta)^rac{n}{2p}uin L^{(p,q)})$. The proofs are simple, as they use Green functions for fractional Laplace operators and suitable cut-off procedures to reduce the fractional results to the sharp estimate on the Riesz potential proven by Adams and its generalization proven by Xiao and Zhai. We also discuss an application to the problem of prescribing the $Q$-curvature and some open problems.
Fractional Adams Moser Trudinger type inequalities / Martinazzi, L. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 127:(2015), pp. 263-278. [10.1016/j.na.2015.06.034]
Fractional Adams Moser Trudinger type inequalities
Martinazzi L
2015
Abstract
Extending several works, we prove a general Adams-Moser-Trudinger type inequality for the embedding of Bessel-potential spaces $ ilde H^{rac{n}{p},p}(Omega)$ into Orlicz spaces for an arbitrary domain $Omega$ with finite measure. In particular we prove $$ sup_{uin ilde H^{rac{n}{p},p}(Omega), ;|(-Delta)^{rac{n}{2p}}u|_{L^{p}(Omega)}leq 1}int_{Omega}e^{alpha_{n,p} |u|^rac{p}{p-1}}dx leq c_{n,p}|Omega|, $$ for a positive constant $alpha_{n,p}$ whose sharpness we also prove. We further extend this result to the case of Lorentz-spaces (i.e. $(-Delta)^rac{n}{2p}uin L^{(p,q)})$. The proofs are simple, as they use Green functions for fractional Laplace operators and suitable cut-off procedures to reduce the fractional results to the sharp estimate on the Riesz potential proven by Adams and its generalization proven by Xiao and Zhai. We also discuss an application to the problem of prescribing the $Q$-curvature and some open problems.File | Dimensione | Formato | |
---|---|---|---|
Martinazzi_Fractional_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
715.62 kB
Formato
Adobe PDF
|
715.62 kB | Adobe PDF | Contatta l'autore |
Martinazzi_preprint_Fractional_2015.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
378.31 kB
Formato
Adobe PDF
|
378.31 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.